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Abstract. We develop a version of stochastic Pi-calculus with a seman-
tics based on measure theory. We define the behaviour of a process in a
rate environment using measures over the measurable space of processes
induced by structural congruence. We extend the stochastic bisimulation
to include the concept of rate environment and prove that this equiva-
lence is a congruence which extends the structural congruence.

1 Introduction

The problem of specifying and analysing nondeterministic concurrent systems
has found a successful solution in the class of Process Algebras (PAs) [2]. The
compositionality of the processes is reflected by the construction principles of
PAs, while their behaviours are transition systems. As a result, one obtains a
class of processes with an elegant algebraic-coalgebraic structure, supported by
appealing theories and easy to adapt to various modelling requirements.

The same approach has been taken for probabilistic and stochastic concur-
rent systems. Probabilistic process algebras [2], interactive Markov chain algebra
[14,4] and stochastic process algebras (SPA) such as TIPP [11], PEPA [12,13],
EMPA [3] and stochastic Pi-calculus [20] are extensions of classic PAs. The
nondeterminism is replaced by a race policy and this requires important mod-
ifications in the semantic format. Stressed to mimic the pointwise structural
operational semantics (SOS) of nondeterministic PAs, SPAs find ad hoc solu-
tions to the problems introduced by stochasticity, such as the multi-transition
system approach of PEPA or the proved SOS approach of stochastic Pi-calculus.
These result in complex constructs that are difficult to extend to a general for-
mat for well-behaved stochastic specifications and problematic when recursion
or fresh name quantification are considered. As underlined in [15], for stochastic
pi-calculus of [20] the parallel composition fails to be associative up to bisimu-
lation, while for PEPA, if arbitrary relations between the rates of processes and
subprocesses are allowed, stochastic bisimulation ceases to be a congruence. An
explanation for these situations is given in [15]: the information carried by the
aforementioned SOS frameworks is excessive, while a well-behaved framework
should only carry the exact amount of data required for the derivation of the
intended semantics.
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These problems motivate our research, initiated with [6], that aims to re-
consider the semantics of SPAs from a perspective faithful to the algebraic-
coalgebraic structure of stochastic processes. The key observation is that struc-
tural congruence induces a o-algebra on processes and organizes a measurable
space of stochastic processes. We propose a semantics that assign to each process
a set of measures indexed by observable actions. Thus, difficult instance-counting
problems that otherwise require complicated versions of SOS can be solved by ex-
ploiting the properties of measures (e.g. additivity). Our previous work showed
that along this line one obtains an elegant semantics that resembles the one
of nondeterministic PAs and provides a well-behaved notion of bisimulation.
In [6] we proved this concept for a fragment of stochastic CCS. In this paper
we approach stochastic Pi-calculus that includes channel-based communication,
mobility, fresh name quantification and replication. This calculus is designed to
satisfy the specific requirements of Systems Biology.

There are several novel ideas in our approach. The processes are interpreted
in stochastic environments that associate basic rates to channels. In a rate envi-
ronment F, a process P has associated a class of measures u, written £ = P — pu.
For each action «, pu(«) is a measure over the space of processes; u(a)(S) € RT
is the rate of an exponentially distributed random variable that characterizes
the a-transitions from P to (elements of) a measurable set S. Only the struc-
tural congruence-closed sets are measurable. This is essential for modelling in
systems biology, where such sets represent chemical soups'. This choice induces
an elegant semantics that supports a smooth development of the basic theory.
It provides simple solutions to the problems of replications and bound outputs
which otherwise, as with Milner’s Abstraction-Concretion method [18], require
complicated high-order reasoning. Also novel is our concept of stochastic bisimu-
lation that extends other similar ones [17, 15, 6, 19] by making explicit the role of
the rate environments. We show that bisimulation is a congruence that extends
the structural congruence.

Related works. The idea of transitions from states to measures has been
advocated in the context of probabilistic automata [16, 22] and Markov processes
[19]. The transition-systems-as-coalgebras paradigm [8,21] exploits it providing
a uniform characterisation of transition systems that covers the sequence nonde-
terministic, probabilistic and stochastic systems. Similar approaches have been
tested with SPAs in [7] and a general SOS format for SPAs without new name
operators or recursion is proposed in [15]; these approaches consider the space of
processes organized by powerset. Instead, we take a different measurable space
that answers to practical modelling requirements, simplifies the semantics and
gives us smooth solutions for the fresh name quantification and replication with-
out requiring additional constructs. The use of name environments has been
consider in [9, 10] where it involves the machinery of nominal sets. We have tried
to avoid this together with any coalgebraic description of the lifting from pro-
cesses to measures, as our intention is to make these ideas accessible for the
readers less familiar with the jargon of Category Theory.

! Structural congruence has been introduced in [1] as a chemical analogy.



2 Preliminaries

In this section we introduce the terminology and the notations used in the paper.

For the sets A and B, 2“4 denotes the powerset of A, [A — B] and B* the
class of functions from A to B. For an equivalence relation ~ on A, A™ is the
set of equivalence classes and a™ the equivalence class of a € A.

Given a set M, X C 2M that contains M and is closed under complement
and countable union is a o-algebra over M; (M, X)) is a measurable space and
the elements of X are measurable sets. 2 C 2M with disjoint elements is a base
for X if X is the closure of 2 under complement and countable union.

A measure on (M, 37) is a function p : X — RT such that u() = 0 and for any
{Nili € I € N} C X with pairwise disjoint elements, u(U;c; Ni) = > i #(Ni).
The null measure w is such that w(M) = 0. For a base {2 > N, then the N-
Dirac measure Dy is defined by Dy(N) = r, Dy(N’) = 0 for N # N’ and
Dn(UicrNi) = 3 ;e Dn(Ng). A(M, X)) denotes the set of measures on (M, X).

IfRCMx M, NCM isR-closed iff {m € M | In € N,(n,m) € R} C N.
If (M, X)) is a measurable space, X(R) is the set of measurable JR-closed sets.

3 Stochastic Pi-Calculus

In this section we introduce a version of stochastic Pi-calculus equipped with
an early semantics [2] expressed in terms of measure theory. Being developed
mainly for applications in Systems Biology, this calculus is designed to respect
the chemical kinetics (the Chemical Master Equation) [5] which provides the
mathematical principles for calculating the rates of the channel-based commu-
nications. The class P of processes is endowed with structural congruence which
generates a g-algebra IT on P. In addition, rate environments assess base rates
to channel names. The behaviour of a process P in a rate environment FE is
defined by an indexed set of measures p : AT — A(P, IT), where AT is the set
of observable actions.

3.1 Syntax

Definition 1 (Processes). Let N be a countable set. The stochastic processes
are defined, on top of 0, for arbitrary r € QT and a,b,c € N, as follows.

P:=0:xz.P:(a@Qr)P:P|P:P+P:!P z:=a(b) : alb].

Let P be the set of stochastic processes. 0 stays for the inactive process. An
input “a(b)” is the capability of the process a(b).P to receive a name on channel
a that replaces b in all its occurrences inside P. An output prefix “a[b]” represents
the action of sending a name b on channel a. “(a@r)” is the fresh name operator
that, unlike in nondeterministic PAs, also specifies the rate r of the fresh name.
As usual in Pi-calculus, we have the parallel composition “|”, the choice operator
“+” and the replication operator “I”. Let N* = {a(b),a[b] | a,b € N'}; in what
follows a,b,c,a’,a; range over N and z, z’, x; range over N'*.



For arbitrary P € P, we define the set fn(P) of the free names of P
inductively by fn(0) = 0, fn(a(b).P) = (fn(P)\ {b}) U {a}, fn(ab].P) =
fn(P)U{a,b}, Fn(PIQ) = fa(P+Q) = fa(P)U fn(Q), (a0r)P = fn(P)\ {a}
and fn(!P) = fn(P). As usual in process algebras, for arbitrary a,b € N, we
write Pp,/p) for the process term obtained from P by substituting all the free
occurrences of b with a, renaming as necessary to avoid capture.

Definition 2 (Structural congruence). Structural congruence is the smallest
equivalence relation =C P x P satisfying the following conditions.

L(P,|,0) is a commutative monoid for =, i.e.,

1. PIQ =Q|P; 2. (P|Q)|R=P|(Q|R); 3.PI0=P.

II. (P,+,0) is a commutative monoid for =, i.e.,

1.P+Q=Q+P;, 2. (P+Q)+R=P+(Q+R); 3.P+0=P.

III. = is a congruence for the algebraic structure of P, i.e., if P = Q, then

1. P|R = Q|R; 2.P+R=Q+R; 3. 2.P=2.0Q;

4. (a@r)P = (aQr)Q; 5. 1P =1Q.

IV. the fresh name quantifiers satisfy the following conditions

1. if a # b, then (a@r)(bQs)P = (bQs)(a@Qr)P; 2. (a@r)0 = 0;

3. ifa & fn(P), then (a@r)(P|Q) = P|(a@r)Q and (a@Qr)(P+Q) = P+(a@r)Q.
V. the replication satisfies the following conditions

1.10=0; 2. (P|Q) ='P|'Q.

V1. = satisfies the alpha-conversion rules

1. (a@Qr)P = (bQr)Pygp/qy; 2. a(b)P = a(c)Pcypy -

If @ is obtained from P by alpha-conversion (VI) 1-2, we write P =* Q. Let
IT be the set of the =-closed subsets of P. Note that P= is a countable partition
of P and IT is the o-algebra generated by P=.

Notice that, unlike in the nondeterministic case, we do not have !!P =!P nor
IP = PJ|!P. These are not sound due to the rate competition which else will
generate processes with infinite rates.

Theorem 1. (P,II) is a measurable space.

The measurable sets of the space (P, IT) are the (finite or denumerable) re-
unions of =-equivalence classes on P. In what follows P, P;, R, Q range over II.
For the economy of the paper it is useful to lift some functions and algebraic
operations from processes to measurable sets.

For arbitrary P,Q € I, a,b € N and r € Q*, consider

QeQ
fn(P) = J fn(P), Piasey = |J Plassys Plo= J (PlQ)=
pep pep Pep
QeQ
; Po = U R=, (a@Qr)P = U (a@r)P=.
RIQeP Pep

The next lemma states that the operations introduced before are internal
operations of I1.

Lemma 1. If P,QcIl,a,be N, r € QF, then P{a/b},P|Q7PQ,(a@T)P e ll.



3.2 Rate environments
Now we introduce rate environments used to interpret stochastic processes.

Definition 3 (Rate Environment). The rate environments associated to N
are defined, on top of a constant €, for arbitrary a € N and r € Q, by

E:=¢: E,aQr.

Let E be the set of rate environments. A suffix a@r is called rate declaration.
If a@r appears in F, we write a@Qr € E. ¢ is the empty environment. We treat
“” as concatenation symbol for rate environments and use “E, E’” to denote
the concatenation of E and E’. € is the empty symbol for concatenation.

For E = Ey,..,E, € E and {1,..,n} = {i1,..,ix} U {j1, .., Jn—k} with 4 <
v <k, 1 < oo < Jp—k, if B/ = E;,.,E; and E" = E;,..,E; ., we write
E'C Eand B =E\ E' Noticethat e CE, ECE,E=FE\cande=FE\E.
The domain of a rate environment is the partial function on E defined as follows.

1. dom(e) = 0;

2. if dom(E) is defined and a & dom(E), then dom(E, a@r) = dom(E)U{a};

3. undefined else.

In what follows, whenever we use dom(E) we implicitly assume that dom is
defined in E. Observe that, if a € dom(FE), then there exists a rate declaration
a@Qr € E and for no s # r, a@s € F; for this reason we also write = E(a). This
suggests that an alternative approach would be to simply consider E as a partial
function. When dom(FE) is defined, let dom(E)* = {a € dom(E) s.t. E(a) # 0}.

The rate environments could be alternatively introduced as partial functions
on N. Such a solution simplifies some semantic rules, but we find it not ”in the
spirit” of process algebras. A more appropriate alternative is to define a type
systems for environment correctness, but this would complicate the semantics.
We find our solution a good trade-off between these possibilities.

3.3 The class of indexed measures

The semantics will involve terms of type £ - P — u, where F is a rate environ-
ment, P is a process and u : AT — A(P, IT) is a mapping that defines a set of
labeled measures. The labels are the observable actions collected in the set AT
defined below.

A = {a[b], a]@r],ab, for a,be N,r € Qt}and AT =AU{r}.

The observable actions consist of four classes: (i) free outputs of type a[b)]
denoting the action of sending a free name b over the channel a, (ii) bound
outputs of type a[@r] denoting the action of sending a fresh unspecified name,
with base-rate r, on channel a, (iii) input actions of type ab representing the
fact that channel a has received a name b (as the result of an output action on
a), (iv) internal action T — communications. In what follows we use «, o/, a; to
represent arbitrary elements of AT,

Notice the relation between the syntactic prefixes of the calculus and the
observable actions. The output prefixes, as in pi-calculus, represent observable



output actions. The input prefix of the calculus, such as a(b) in the process
a(b).P, does not represent an authentic action, but the capability of P to receive
a name on channel a; consequently we adopt an early semantics [2]: if a name
c is sent on a, the input action is ac and it labels the transitions to Pf./p). In
this way, to a single prefix a(b) correspond as many input actions ac as names
c can be sent on a in the given rate-environment. Unlike the nondeterministic
case, for stochastic Pi-calculus we cannot define a late semantics [2] because only
the input actions of type ac correspond to a measure on the space of processes,
while a(b) represents a set of measures, one for each name received. Because our
semantics aims to associate a measure to each process and action label, we need
to refuse the inputs of type a(b) in the set of labels and chose an early semantics.
The bound output a[@r] in the form that ignores the argument of communi-
cation is novel. It labels a bound output of type (b@r)a[b]. P. The example bellow
explains its action; anticipating the semantics, £ - P 2% Q= means that in the
environment E, P can do an a-transition with rate r to the elements of Q=.

Ezample 1. The processes Q = (bQr)a[b].P and R = (cQr)a|c]. Py, are struc-
tural congruent and we want them bisimilar in our semantics. If we consider that
the (only) observable transition in which @ can be involved is a[b@r], as it is

done in other PAs, then the transition is E - (b@r)a[p].P "2 (ar)p=,

while for R the transition is £ & (cQr)alc].Py./p ale@rl,g(e) (c@r)PZ ;- Obvi-
ously, (b@r)P= = (c@Qr)PF ,,, but if b # ¢, then a[bQr] # a[c@r] and in effect,
@ and R are not bisimilar in this interpretation.

For obtaining the expected bisimulations, one needs to accept that for any
b,c € N, a|b@r] = a[c@r]; and this is equivalent with accepting that an external
observer can only see that a private name at rate r has been sent on channel a

without seeing the name. Hence, the real observable action has to be a[@r].

Our solution is similar to the Abstraction-Concretion method proposed in
[18] for nondeterministic pi-calculus. a[@r] does the job of Abstraction, as our
measurable sets of processes are Milner’s abstracted processes. Only that in our
case, because the transitions are not between processes but from processes to
structural-congruence classes, we need no Concretions. So, the main advantage
of our approach is that it solves the problem of bound outputs without using
higher order syntax as in the classic pi-calculus?.

To introduce the semantic rules in the next section, we need some operations
on A(P,I1)". Let Aa = {a[@r], fora € N,r € Qt} and for a € N, let
A, = {a[b],ab,a[@r], for b € N,r € QT}. p € A(P, H)A+ has finite support if
the set of & € AT such that « is not an input action and u(«) # w is finite or
empty. Recall that w is the null measure and Dp= the P=-Dirac measure.

Definition 4. Consider the following operations on A(P, H)A+,

2 By translating nondeterministic Pi-calculus into stochastic Pi-calculus where all
rates are 1.0, one can get a similar solution for the classic Pi-calculus with a se-
mantics based on the transitions from processes to structural-congruence classes.



1. Operations of arity 0.

(i) Let W : AT — A(P, IT) defined by w(a) = w for arbitrary o € A™;

(ii) Forx e N*, E € E, P € II with fn(P) C dom(E), let E} : At — A(P,II),
E;[b] (alb]) = E(a) Y- p=cp Dp= and for o # ab], E%[b] () = w;

a(b a(b
EP( )(ac) = E(a) ZP{EC/HQP Dp= . and for a # a(b), EP( )(a) =w.
2. Operations of arity 1.

(i) For € AR, I, P € IT, let pp : A — AR, IT), jip(a) (R) = u(@)(Rp).

(ii) For p € AP, IN*", a € N and r € QF, let (a@r)p: AT — A(P, ),

u(a)(P), ifa g Ay UAg, R = (a@r)P
(a@r)u(a)(R) = g(b[a]W’) + p(dl@r])(P), iJ;a = bl@r], R = (a@r)P

)

3. Operations of arity 2.

(i) For p,m € AR, IDA", let p®n: AT — AP, IT), (1@ n)(a) = p(e) + n(e).
(i) For p,n € A(P, H)A+ with finite support, P,Q € II and E € E for which
dom(E) is defined, let p p2gn: AT — A(P,II),

~ for a € A, (1 P& M)(@)(R) = pa(@)(R) + np()(R);
~ for T, (1 P2 M)(T)(R) = po(1)(R) +np(7)(R)+
a€dom(E)*
<~ u(alb))(Py) - n(ab)(P2) + n(al[b])(Py) - p(ab)(Pa)
P1 VZ?.:CR E(CL) '

((z@r)y[«]. P’ |P")+P"""=CP

B QEIEER  (yl@r]) (@) P'[P"F) - n(ya)(Ql,. Q)
E(a)

+
(2@r)(P'|Q),,.,)|P"|Q"=CR

I oty _ _
(MY () (P4 [P - (y[ar]) (@0r)Q'1Q")

2 E(a)

(@On)(P},,.,|Q)|P"IQ"=CR

Observe that because we work with functions with finite support and because
dom(FE) is defined and finite, the sums involved in the definition of u 7;@)5 1 have
finite numbers of non-zero summands. The meanings of these operations are
clarified in the next section where they play an active role in the semantic rules.

Lemma 2. 1. For pu, p/,p" € AR, INA", pa ' € AP, H)A+ and

(@) pop =pep (b). pwop)ep"=ps@eun”), (. p=pow.
2. For p,m,p € A(P, H)A+ with finite support, u p®g n e AP, H)AJr and

(@) upREn =1 0®p k.,  (b). (1 PREN) PR p =k PG R (N 0D p),
(©). p P& @ = pu.



3.4 Semantics

The stochastic transition relation is the smallest relation T C E x P x A(P, IT )A+
satisfying the semantics rules listed bellow, where E + P — p denotes (E, P, i) €
T; it states that the behaviour of P in the environment E is defined by the
mapping u € A(P, IT )A+. For each =-closed set of processes P € II and each
a € AT, u(a)(P) € RT represents the total rate of the a-reductions of P to
the elements of P. The rules involve also predicates of type E F ok that encode
the correctness of F, i.e. that the environment associates base rates to a finite
number of channels only, and that no channel appears in more than one rate
declaration in that environment. Recall that =* denotes alpha-conversion.

E+ ok a ¢ dom(FE)

(Enve). e I ok (Env@).

E,aQr - ok
EF ok .P)Cd E
(Null). LOI{, (Guard). ° fn@.P) € dom(E)
ErO0—w EFa2.P— E%=
EFP—pu EF-Q—n EFP—p EFQ—n
(Sum). (Par). =
E,aQrt P E-P
(New). AT — K (Rep). _otrze
EF (a@Qr)P — (aQr)py EFP — up=
(Alpha). EFP—pu P="Q

EFQ—pu

(Null) guarantees that in any correct environment the behaviour of process
0 is described by w, which associates the rate 0 to any transition.

(Guard) associates to any prefixed process x.P the mapping E%- which, as
described in Definition 4, associates the base-rate of the channel of x to the
x-transitions from z.P to P= and rate 0 to the other transitions.

(Sum) computes the rate of the a-transitions from P + @ to R € II, as the
sum of the rates of the a-transitions from P and @) to R respectively.

(Par) takes into account the possible interactions between the processes. If
p =l pz®55 7, the rate p(a)(R) of the a-transitions from P|Q to R for « # T,
is the sum of the rates p(a)(Rg=) and n(a)(Rp=) of the a-transitions from P
to Rq and from @ to Rp respectively; the rate of the 7-transitions from P|Q to
R is the sum of the rates of the T-transitions that P or @ can do independently
plus the rate of all communications between P and @ (bound represented by the
first sum in Definition 4 3.(ii) and unbound represented by the last two sums).
Because we use the base rate of the channel ¢ when we calculate the rates of
both inputs and outputs on a, the sums in Definition 4 3.(ii) are normalised by
E(a).

(New) establishes that the rate of the transitions from (a@r)P to (a@r)R €
II in the environment F is the rate of the corresponding transitions from P to



R in the environment F,a@r. The only thing one needs to take care of (see
Definition 4) is when an output becomes bound while (New) is used. Consider,
for instance, the process® Q = b[a].P + (c@Qr)b[c]. P{c/a}

EB.aart Q" MY p= and B,aar - Q"™ (car)Pz .
Now, if we consider (a@r)Q = (a@r)b[a ].P—I—(c@r)b[ ].P{C/a}, because (aQr)P =
(c@r)Pre/ay, the rates of the transitions in the environment E should be

E+ (a@r)Q (a@r)P and F + (a@r)Q tlerler (a@r)P=.
Notice that the rate of bla]-transition of @ contributes to the rate of b[@r]-
transition of (a@r)@ and this is how Definition 4 introduces (a@r) .

(Rep) encodes the intuition that in the case of stochastic systems, if E +
P 2% Q=, then E +!P 25 1P|Q=.

(Alpha) proves properties by alpha-conversion: it guarantees that the be-
haviour of a process does not change if the bound variables are renamed. The
standard presentations of PAs with unlabeled reduction mix structural congru-
ence with reductions by rules of type (Struct). Because our reductions are labeled
(the labels are hiden into the mappings), alpha conversion needs to be separately
incorporated both in the algebra and coalgebra.

Notice that we do not have, for a fixed environment E, a binary operator
on A(P, IT ),v to reflect the parallel composition of processes. Such a definition
is, in fact, impossible. Assume, otherwise, that there exists an operator ®F
such that if E - P — g and E - Q — 7, then E - P|Q — pu®% 7. The
processes P = a[b].0/c[d].0 and @ = ab].c[d].0 + c[d].a[b].0 have associated, in
any correct environment F, the same mapping u € A(P, IT )‘M. Suppose that
E + R — 1, where R = ¢[f].0. If, indeed, the operator @ is well defined, then
EF PR — p®Fnand EF QIR — u®F n, ie. PIR and Q|R have associated
the same mapping. But this is not the case, because P= # Q= and

E+ PR VEY p= and B P|R VY o= while
E+ QR ” ’ p=and E+ Q|R YEY o=,

This explains why we need to index ®E with P= and @~ and why the algebraic
signature is changed when the structure of processes is lifted to indexed measures.
The next example illustrates some transitions in our framework.
Ezample 2. EF (b@Qr)(alb].P)|a(c).Q Ti((;) bQr)(P|Qb/cy)=-
alb],E(a)

From (Guard) we derive E, bQr - a[b].P —— ~ P=. (New) gives us further that

- (b@r)afp].p “TLE®

rate. Observe that the definition of EZQ(EC) implies E F a(c).Q ab.B(e) Q%/er-
Applying the definition of (b@r)(a[b]_p)z®aE(c)'QE , we obtain

F (b@r)(alp].P)|a(c).Q = (b@r)(P|Qgb/cy)~ for s = E(a) if E(a) # 0 and
s =0if E(a) =0.

(b@r)P= and this is the only transition with non-zero

3 For simplicity, we continue using the notation of Example 1: E - P =% R denotes
that E+ P — p, and p(a)(R) = 1.



A consequence of this result is the well known case of communication of a

private name used for a private communication

E F (b@r)(afb]-be).P)la(e).cld].0 =% (bar)(b(e).Plb[d).0)= =% (bar)P5,,,.

The first transition is a particular case of the example. For the second transition
we apply the case 3 (ii) of Definition 4.

The next theorem states that ¥ is well defined and characterizes the correct-
ness of an environment.

Theorem 2. (i) If E - ok and fn(P) C dom(FE), then there exists a unique
1€ AP, A" such that E+ P — p.
(i) If E- P — p, then E & ok. Moreover, E+ ok iff EF 0 — @.

The next theorem states a property of type (Struct).
Theorem 3. If E+ P’ — p and P' = P”, then E+ P" — p.

The next lemma describes how the environments can vary without influencing
the mapping associated to a process.

Lemma 3. 1. If for any a € N and r € Q, [aQr € E iff a@Qr € E'], then
EFP S uiff E'FP =

2.IfE'+-ok, ECE and E- P — p, then E' = P — p.

3. IfECE,EFP— uanddom(E' \ E)N fn(P)=10, then E' - P — p.

4 Stochastic bisimulation

In this section we focus on stochastic bisimulation that reproduces, at the stochas-
tic level, Larsen-Skou probabilistic bisimulation [17]. We have introduced a sim-
ilar concept in [6] for the case of stochastic CCS. The novelty with the present
definition consists in the role of the rate environments: two processes are stochas-
tic bisimilar if they have similar stochastic behaviours in any rate environment.

Definition 5 (Stochastic Bisimulation). A rate-bisimulation on P is an
equivalence relation R C P x P such that (P, Q) € R iff for any E € E,
—if EF P — u, then there exists n € A(P, H)‘v such that E+ Q — n and for
any C € II(R) and a € AT, p(a)(C) = n(a)(C).
—if B+ Q — 1, then there exists yu € A(P, H)A+ such that E+ P — u and for
any C € II(R) and a € AT, n(a)(C) = u(a)(O).

Two processes P,Q € P are stochastic bisimilar, denoted P ~ @, if there
exists a rate-bisimulation connecting them.

Observe that stochastic bisimulation is the largest rate-bisimulation on P.

Ezample 3. If a,b,x,y € N, a # b and = & fn(bly].Q), then
a(z).Plbly].Q ~ a(z).(P[bly].Q) + bly].(a(x).P|Q).

Indeed, for any compatible rate environment F,



a(x b
Bt a(2).Pby).Q = EX ) p®sia B,

a(x b
B & a(x).(Pbly]-Q) + blyl-(a(z).PIQ) = Efyly 0 ® Eall) pio
and for arbitrary C € IT(~),
a(x bz a(x bly
EP( : a(x).PSbly].Q EQM (a)(C) = EP(Ib?Q SF [J]).P|Q(Oé)(C) =

a(z
E(a) if a = ac, P .y|b[y].Q € C,
0 if a=ac, Pr/n|blyl.Q ¢ C,
(8) it = bly], a(r).PIQ < C.
0 ifr = by, a(x) PIQ ¢ C.
0

else .

The previous example shows bisimilar processes which are not structurally
congruent. The reverse affirmation is not true.

Theorem 4. If P = (@, then P ~ Q.

The next theorem, stating that stochastic bisimulation is a congruence, proves
that we have identified a well-behaved semantics.

Theorem 5 (Congruence). If P ~ Q, then

1. for any x e N*, 2.P ~ 2.Q;

2. forany ReP, P+ R~Q+ R,

3. for any a € N and r € QF, (a@r)P ~ (a@Qr)Q;
4. for any R € P, P|R ~ Q|R.

5. 1P ~10.

5 Conclusions and future work

In this paper we propose a way of introducing stochastic process algebras that
is faithful to the algebraic-coalgebraic structures of the concurrent Markovian
processes. The semantics is given in terms of measure theory and describes the
lifting of the algebraic structure of processes to the level of measures on the mea-
surable space of processes. The paper treats the case of the complete stochastic
Pi-calculus. Instead of the discrete measurable space of processes, we consider
the measurable space induced by structural congruence and this idea has im-
portant advantages. Firstly, it matches practical modelling requirements: the
identity of a system is not given by the stochastic process used to model it, but
by its structural-congruence class (for systems biology this represents a chemi-
cal soup). Secondly, by working with measures on this space, we get important
advantages on the level of the underlying theory such as a simple and elegant
semantics, simple solutions for the problems related to bound output and repli-
cation (that otherwise require complicate transition labeling and higher order
reasoning) and a well-behaved notion of stochastic bisimulation including asso-
ciativity. Other advantages derive from the use of the rate environments that
guarantees a certain robustness in modelling: a model cab be easily refined by
modifying its rate environmet.



Our approach opens some future research directions. One is the study of the
GSOS format where the main challenge is to understand the underlying category.
Another is the definition of a pseudometric, similar with the one we introduce
in [6], to measure the distance between processes in terms of similar behaviours.
Our semantics is particularly appropriate for introducing such metrics via the
metrics on measures such as the Kantorovich metrics on distributions used, for
instance, in [19].
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Appendix

In this appendix we have collected some of the proofs of the main results pre-
sented in the paper.

Proof (Theorem 2). (i) The existential part is proved by induction on the struc-
ture of P and the uniqueness by induction on derivations.

First we prove the existential part.

For P = 0 and P = z.QQ, (Null) and (Guard) respectively guarantee the
existence of p.

For P = @ + R: because fn(P) = fn(Q)U fn(R), fn(Q) C dom(E) and
fn(R) C dom(E). We use the inductive hypothesis and obtain that exist two
functions 7, p such that E+ Q — n and E+ R — p. From (Sum) we obtain that
exists p = n @ p such that B+ P — p.

For P = Q|R: because fn(P) = fn(Q)U fn(R), fn(Q) C dom(E) and
fn(R) C dom(E). We use the inductive hypothesis and obtain that exist two
functions 7, p such that E+ @Q — n and E+ R — p. From (Par) we obtain that
exists u = 1n{g=FEgr=)p such that E+ P — p.

For P = (a@r)Q: if a & dom(FE), then E,aQr I ok and the inductive hypoth-
esis guarantees the existence of n such that £, a@r - @Q — n. Further, applying
(New), we get E F P — (a@r)n. If a € dom(E), let b € N\ dom(E). Then
E,bQr F ok and the inductive hypothesis guarantees the existence of 1 such
that E,bQr - Qy/q) — 1. Further, applying (New), we get E = (bQr)Qp/q) —
(b@r)n and (Alpha) gives E F (a@r)Q — (b@Qr)n. Consequently, in all the cases
there exists p such that E F (a@r)Q — p.

For P =!Q: because fn(Q) = fn(P), the inductive hypothesis guarantees
the existence of a unique n such that F F Q — n. Further, applying (Rep), we
get EF P — ng.

The uniqueness part is done by induction on derivations.

The rules (Enve) and (Env@) are only proving the correctness of environ-
ments and consequently will not interfere with our proof.

Observe that all the derivations involving only the rules (Sum), (Par), (New)
and (Rep), called in what follows basic proofs, demonstrate properties about
processes with a more complex syntax than the processes involved in the hy-
potheses. Consequently, taking (Null) and (Guard) as basic cases, an induction
on the structures of the processes involved in the derivations shows the unique-
ness of u for the situation of the basic proofs. Notice, however, that due to
(New) a basic proof proves properties of type F = P — p only for cases when
new(P) Ndom(E) = 0, where new(P) is the set of names of P bound by fresh
name quantifiers. To conclude the proof we need to show that if Q@ = P, /) with
a,b¢ fn(P)and if EF P — pand E + Q — 7 can be proved with basic proofs,
then p = 1.We do this by induction on P.

If P=0,then Q@ =0and n=p=0w.
If P = c[d].R, then Q = c[d].R{q/py and a,b & fn(R). Moreover, j = Elc%[i] and

n= Eg?/b}. But because a,b € fn(R), R = R,y implying further pu = 7.



If P = ¢(d).R, then if d # b the proof goes as in the previous case. If P = ¢(b).R,
then Q = c(a).Riq/py, 1 = Ef%(b) and n = EIC%(?(L)M}. It is trivial to verify that
=1

If P=S+T,then Q = Sgq/py +T{aspy- Suppose that EF S — pand E-T — v,
then from the inductive hypothesis, E' - S¢, /5y — p and E = T, /) — v. Hence,
p=n=pov.

If P = S|T the proof goes as in the previous case.

If P =!R, Q =!R{q/p)- Suppose that E'+ R — p. From the inductive hypothesis
we also obtain that F - Ry,/;) — p. The conclusion derives further from the
fact that |R =!Ry, /) because a,b ¢ fn(R).

If P = (cQr)R with ¢ # b, then Q = (cQr)R, ;). Because we are in the case
of a basic proof, ¢ € dom(E). Suppose that E,cQr - R — p. This is the unique
hypothesis that proves E - P — u. Then, p = (c@r)p and the inductive hy-
pothesis implies that F,cQr - Ry, /) — p is the unique hypothesis that proves
E = Q — 7. Further we get £ (cQr)Ry,/;3 — (c@r)p. Hence, in this case,
=1

If P = (b@r)R, then Q = (a@r)Ry,/). Because we work with basic proofs,
we have a,b ¢ dom(E). A simple induction proves that if E,b@Qr + R —
p, then E aQr = Ry, — p', where for any a € A" and any R € II,
p(a)(R) = p'(aqaspy)(Ryaspy)- From here we get (bQr)p = (a@r)p’. Observe
that E,bQr - R — p is the unique hypothesis that can be used in a basic proof
to derive E - (b@Qr)R — p and p = (b@r)p. Similarly, E,aQr & Ry, — p is
the unique hypothesis to prove £ & (a@r)R;,/5) — n and 1 = (a@r)p’. Hence,
also in this case, p = n.

In this way we have proved that any couple of alpha-converted processes have
associated the same mapping by basic proofs. In addition, (Alpha) guarantees
that any kind of proofs will associate to alpha-converted processes the same
mapping and this concludes our proof.

(ii) We prove the first part by induction on derivations. The second part is a
consequence of the first part and (Null).

If E+ P — pis proved by (Null) or (Guard), E F ok is required as hypothesis.
If E- P — pis proved by (Sum), P=Q+ R, p=n®pand E+ Q — n and
E F R — p are the hypothesis and we can use the inductive hypothesis.

If E+ P — pis proved by (Par), the argument goes as in the previous case.

If E+ P — pis proved by (New), then P = (a@r)@Q and the hypothesis is of
type F,a@r = @ — 1. The inductive hypothesis gives E, a@Qr I ok and this can
only be proved by (Env@) from E F ok.

If E+ P — pis proved by (Rep), then P =!Q and F I @ is the hypothesis and
we can apply the inductive step.

If E+ P — pis proved by (Alpha), we can use the inductive hypothesis again.

Proof (Lemma 3). 1. A simple induction on derivations that involve only (Enve)
and (Env@) proves that E + ok iff E'  ok. For proving our lemma we will
proceed with an induction on the derivation of £+ P — p.



If E+ P — pis proved by (Null), we have that P = 0 and due to Theorem
2, u = w. Applying (Null) we obtain E' - P — u.

If E+ P — uis proved by (Guard), we have that P = z.QQ and due to
Theorem 2, u = E. Because £, = EF and dom(E) = dom(E'), we obtain
E'+P—p.

If EF- P — pis proved by (Sum), we have that P=Q + R, p =1 & p and
the hypothesis are F - @ — n and E + R — p. From the inductive hypothesis
we obtain £/ H @ — n and E' v R — p. Further, applying (Sum) we get
E'FP—p.

If E+ P — pis proved by (Par) we have that P = Q|R, u =1 Q®§ p and
the hypothesis are £+ @Q — n and £+ R — p. From the inductive hypothesis
we obtain £/ - @ — n and E' R — p. Further, applying (Par) we get
E’l—P—)nQ@)glp. Buth®gp=nQ®3p.

If E+ P — pis proved by (Rep), we have that P =!Q, u = mg and the
hypothesis is E - Q — n. Applying the inductive step we get E' - Q — 1 and
(Rep) guarantees that E' - P — p.

If E+ P — puis proved by (New), we have that P = (a@r)Q, p = (a@r)n
and the hypothesis is F,aQr F @ — n. Hence, a € dom(E) = dom(E'’) and we
can apply the inductive hypothesis because b@s € E, a@r iff bQs € E’, aQr and
obtain E’, a@r F Q — n where from we get E' - P — p.

If E+ P — pis proved by (Alpha), we have that P = Q. with a,b ¢
fn(P) = fn(Q) and the hypothesis is £ + @ — p. As before, the inductive
hypothesis guarantees that E' - @ — p and because a,b € fn(Q), (Alpha)
proves E' - P — p.

2. Induction on the derivation of F + P — pu.

If E+ P — pis proved by (Null), we have that P = 0 and due to Theorem
2, u = w. Applying (Null) we obtain E' + P — p.

If E+ P — pis proved by (Guard), we have that P = z.QQ and due to
Theorem 2, u = Ef. Because fn(P) C dom(E) C dom(E') and E§ = Egy, we
obtain E' - P — p.

If E- P — pis proved by (Sum), we have that P=Q + R, u =n ® p and
the hypothesis are £+ @Q — n and £+ R — p. From the inductive hypothesis
we obtain B/ - Q@ — n and E' + R — p. Further, applying (Sum) we get
E'FP—p.

If E+ P — pis proved by (Par) we have that P = Q|R, u =1 Q@,”; p and
the hypothesis are £ - Q — n and E + R — p. From the inductive hypothesis
we obtain £/ - @ — n and E' b R — p. Further, applying (Par) we get
E’I—P—)nQ@)g/p. Buth®gp=77Q®g/p.

If E+ P — pis proved by (Rep), we have that P =!Q, u = mg and the
hypothesis is E - Q — 1. Applying the inductive step we get E' - Q — 1 and
(Rep) guarantees that E' - P — p.

If E+ P — pis proved by (Alpha), we have that P = Q. with a,b ¢
fn(P) = fn(Q) and the hypothesis is E + @Q — pu. As before, the inductive
hypothesis guarantees that E' - @ — p and because a,b € fn(Q), (Alpha)
proves that E' = P — p.



If E+ P — puis proved by (New), we have that P = (a@r)Q, p = (a@Qr)n
and the hypothesis is E,aQr - Q — n. Hence, a € dom(E). If a &€ dom(E"),
the inductive hypothesis guarantees that E’,a@r - Q — 1 where from we get
E'FP — p. Ifa € dom(E'), let b & dom(E')U fn(P). Because E,aQr - Q — 1
is provable, also E,bQr & Qy/ay — 7{b/ay is provable, where 7,4y is the
mapping obtained from 7 replacing all the occurrences of a in the definition of
7 (in processes and labels) with b. Moreover, to each proof of E,a@r - Q — 7
corresponds a proof of E, bQr = Qy/a) — 1{p/q} that is, from the point of view of
our induction, at the same level with the proof of F, a@r - @ — 7. Consequently,
we can apply the inductive hypothesis to E,bQr = Qyp/qy — 1{p/4} and obtain
E',bQr = Qpray — N{p/a}- (New) implies E' = (bQr)Qyp/qy — (0Q1)053/4) and
(Alpha) E" F (a@r)Q — (b@Qr)ng,/q)- To conclude, it is sufficient to verify that
(a@r)n = (bQr)ng/q)-

3. The proof goes similarly with the proof of the previous case. We use an
induction on the derivation of £+ P — p.

If E+ P — uis proved by (Null), we have that P =0 and yu = @w. Applying
(Null) we obtain E' - P — p.

If B+ P — pis proved by (Guard), we have that P = z.QQ and p = G§.
Because fn(P) C dom(E), fn(P)Ndom(E\ E') =0 and Ef = E, we obtain
E'FP—p.

If EF- P — pis proved by (Sum), we have that P=Q + R, p =1 ® p and
the hypothesis are E - Q — n and E F R — p. From the inductive hypothesis
we obtain £/ -+ @ — n and E' v R — p. Further, applying (Sum) we get
E'+P—p.

If E+ P — pis proved by (Par) we have that P = Q|R, u =17 Q®£ p and
the hypothesis are £+ Q — n and E F R — p. From the inductive hypothesis
we obtain B/ - @ — n and E' b R — p. Further, applying (Par) we get
E’I—P—H]Q@g/p. Buth®§p=77Q®g/p.

If E+ P — pis proved by (Rep), we have that P =!Q, u = mg and the
hypothesis is E - Q — n. Applying the inductive step we get E' - Q — 1 and
(Rep) guarantees that E' - P — p.

If E+ P — pis proved by (Alpha), we have that P = Q) with a,b ¢
fn(P) = fn(Q) and the hypothesis is E - @ — p. As before, the inductive
hypothesis guarantees that E' - @ — p and because a,b ¢ fn(Q), (Alpha)
proves that E' - P — p.

If E+ P — uis proved by (New), we have that P = (a@r)Q, pu = (a@r)n
and the hypothesis is E,a@Qr F Q — 7. Hence, a ¢ dom(E) and because
dom(E’) C dom(E), we obtain that a ¢ dom(E’). Because E,a@Qr C E’ aQr
and dom((E’,a@r) \ (E,aQr)) = dom(E’' \ E), we can apply the inductive hy-
pothesis and from E,a@r - Q — n we obtain E’,aQr F QQ — n where from we
get B' =P — p.

Proof (Theorem 5). From P’ = P” we obtain that fn(P’) = fn(P”) and Theo-
rem 2 ensures that F + P’ — p implies that there exists a unique p’ such that
EF P =y,



We prove now that F + P’ — p implies E = P” — pu. The proof is an
induction following the rules of structural congruence presented in Definition 2.
Rule I.1: if P’ = P|Q and P” = Q|P. Suppose that E- P - nand E+ Q — p.
Then p =7 P®5 p and Lemma 2 guarantees that £+ P — p.

Similarly we can treat all the rules of group I.

Rules of group II: As previously, the results derive from the properties of @
stated in Lemma 2.

Rules of group IIIL: If (P’ = P|R and P” = Q|R), or (P = P+ R and
P’ =Q+R),or (P =xP and P" = z.Q), or (P’ =P and P" =!Q) for
P = (@Q, we can apply the inductive hypothesis that guarantees that E+ P — 7
iff £+ Q — n. Further, if F = R — p, we obtain the desired results because
npREP=1 ok p, n®p=n&p, Ep = EY and jup = puq.

If P" = (a@r)P and P” = (a@r)Q, we have two subcases.

Subcase 1: a € dom(E). Suppose that E,a@r = P — 7. From the inductive
hypothesis we obtain that F,a@r F @ — n. Further, rule (New) proves that
= (a@Qr)n and E F (a@r)Q — pu.

Subcase 2: a € dom(E). Let b € N\ dom(F). Suppose that F,bQr -
Pryqay — n. Then, (New) implies E = (b@r) Py 4y — (b@r)n and (Alpha) proves
E I (a@r)P — (b@r)n. Hence, p = (bQr)n. On the other hand, the inductive
hypothesis implies £,bQr = Q/qy — 7, (New) proves E F (bQr)Qp/ay —
(b@r)n and (Alpha) implies E F (a@r)Q — (bQr)n.

Rule IV.1: If P’ = (a@r)(b@s)P and P" = (b@s)(a@r)P. Let ¢,d € N\
dom(FE). Suppose that E;cQr;dQ@s = Pcjqa — 1. Applying twice (New)
we obtain E = (c@r)(dQs)P./q.q/0y — (cQr)(d@Qs)n and applying twice (Al-
pha) we get E - (a@r)(bQs)P — (cQr)(dQs)n. Hence, p = (cQr)(dQs)n. On
the other hand, Lemma 3.1 guarantees that F;cQr;dQs & Pr./q.q/0y — 7 im-
plies F;dQs;cQr = Pic/q.q/5y — 1 and, as before, we eventually obtain £
(bQs)(a@r)P — (dQs)(c@r)n. Now it is suficient to verify that (d@s)(c@r)n =
(c@r)(dQs)n.

Rule IV.2: If P’ = (a@r)0 and P” = 0. In this case it is sufficient to notice
that (a@Qr)w = w.

Rule IV.3: If P’ = (a@r)(P|Q) and P" = P|(a@r)Q, where a & fn(P). Let b €
N\ (dom(E)U fn(P)). Suppose that E,bQr = P — n and E,bQr = Qy/qy — p-.
Observe that because a ¢ fn(P), we also have E,bQr = Py, a1 — 1. Further we
obtain

,bQ@r
E,b@r - (PQ)(b/a) = 1 Py, @0y, £ and

EF (b@r)((P1Q)gp/ay) = (bQr)(1 p,, ., @00 " p).

Now we apply (Alpha) and obtain
Et (a@r)(PIQ) — (bar)(n p&5" p).

On the other hand, because b ¢ fn(P), from E,bQr - P — n Lemma 3.2
proves E = P — n and from E,bQr - Qq/q) — p we obtain, applying (New),
EF (b@r)Qp/ay — (bQr)p. And further,

E+ P|(bQr)Qb/ay — 1 P®gy@r)Q{b/a} (b@r)p.



Applying (alpha) we obtain
E+ Pl(a@r)@Q — 1 P®5’@T)Q{b/a} (bar)p.

A simple verification based on the observation that (if for all R € R, b & fn(R),
then (b@Qr)R = R) proves that

E,p@
(b@r) (1 p@gr P) =1 pOlarqy,., (0OT)P-

Similarly can be proved that case P’ = (a@r)(P+@Q) and P" = P+ (a@Qr)Q,
where a & fn(P).
Rules of group V: By a simple verification one can prove that ;g = w. For
the second rule, observe that if E+ P — n and E+ Q — p, then E H(P|Q) —
(n P®5 phyplq) and E FIP[IQ — 7 !Q|P®!E;D|Q p- And a simple verification proves
that
(0 PG PIPIQ) =1 191p@ip|q P

Rules of group VI: These rules are a direct consequence of (Alpha).

Proof (Theorem 5). 1. Prefix: For any C € II(~), P € C iff Q € C. This
entails that for any E € E with fn(z.P)U fn(2.Q) C dom(FE) and any « € At
E3(0)(C) = E3(a)(C).

2. Choice: We can suppose, without loosing generality, that £ - P — p,
EFQ — nand E+ R — p (the other cases are trivially true). Then, E F
P+R—p®pand EFQ+R—n®p. Let C € II(~) and o € AT, Because
P~ Q, #(a)(C) = n(a)(C) implying u(a)(C) + p(a)(C) = n(@)(C) + pl(a)(C).
This means that (1 @ p)(a)(C) = (n @ p)(a)(C).

3. Fresh name quantification: Let E € E and b € dom(E)Ufn(P)Ufn(Q).
Observe that from P ~ @, following an observation that we used also in the proof
of Lemma 3 concerning the relation between a mapping 7 its correspondent
Niv/a}, We derive Pryqy ~ Qp/q)- Suppose that E,bQr & Py, .y — p and
E,bQr = Qy/ay — 1. Applying (New) we obtain E = (bQr)Ppqy — (bQr)u
and E = (bQr)Qqp/qy — (bQr)n. (Alpha) implies £ = (a@r)P — (b@r)y and
E + (a@Qr)Q — (bQr)n. From Py .y ~ Qu/a) We obtain that for any o € AT
and any C € II(~), u(a)(C) = n(a)(C). to conclude the proof it is sufficient to
verify that (0@Qr)u(a)(C) = (bQr)n(a)(C).

4. Parallel composition: For the beginning we consider the processes that,
to all syntactic levels, contain no subprocess form the class 0= in a parallel
composition. Let’s call them processes with non-trivial forms. We will first prove
the lemma for processes with non-trivial forms.

For arbitrary n € N, let P" be the set of process terms with non-trivial forms
and no more than n occurrences of the operator “|”. Let ~"C P™ x P™ be the
largest rate-bisimulation defined on P™. We define =™¢ P" x P" by



{(P1||Pk,Q1|‘Qk), (Pl + -~-PkaQ1 + Qk) for Pl ~onl Q“’L = 1]{},k‘ S 7’1,}

We show, by induction on n, that ~™" is a rate-bisimulation, i.e. that =" C~".

Suppose that P ~" ). We need to prove that if E+ P — pand E - Q — 7,
then for any o € At and any C € II(="), u(a)(C) = n(a)(C).

Observe that, from the way we construct ~", there are three possibilities:
either P ~"1 Q, or P= P, +..P, and Q = Q1 + ...Q, or P = P;|...|P; and
Q = Q1]...|Qx, for k < n, with P, ~"~1 Q; for each i = 1..k. In the first two
cases, using also the case of choice operator that we have already proved, it is
trivial to verify that u(a)(C) = n(a)(C).

To prove the last case observe for the beginning that because ~"~1C~", the
inductive hypothesis guarantees that for each i = 1..k,

Pi|..|Pi_1| Pyl .| P =" Q1...|Qi—1|Qi11]--.|Qk and consequently that
Pl‘-~-|Pi71|Pi+1|---|Pk L Ql||Qz71‘Qz+1||Qk
Suppose that E+ P; — p; and E F Q; — n; for all © = 1..k. Then,

=1 p, ®1€2\...|Pk (12 p, ®1€3|...\Pk ((r—1 @B, pk)--),

_ E E E
=M Q90,.1ox (12 @2®Qs)..1@x (-1 g, @G, M)+,
Consider an arbitrary o € A. Then,

u(a)(C’) = Z Mi(a)(CP1|...\P1'71|Pi+1\~~|Pk)7

i=1..k

ﬁ(a)(c) = ni(a)(CQlln-‘Qi—l‘Qi+1|»--‘Qk)'
i=1..k
Because C' € II(="), Cp,|..|p,_|Piss|..| P @D CQ 1. |Qi_1]Qis1]...|Qr CONtAIN
only processes with at most n — 1 occurrences of |, for any 7. And because
Pl‘-~-|Pi—1|Pi+1|---|Pk ~nl Q1||Qz—1‘Qz+1||Qk; we obtain

—1
CP1|'~~‘Pi71|Pi+1\~~~|Pk = CQ1‘~~~|Qi71|Qi+1‘~~~IQk € U(Nn )

Further, using the fact that ~™~! is a rate bisimulation, we obtain

u(a)(cpl|~~-‘Pi—1|Pi+1|---‘Pk) = n(a)(CQ1|<~~‘Qi—l \Qi+1|~--\Qk)

that implies p(a)(C) = n(a)(C).

A similar argument proves the case a = 7. Consequently, ~" is a rate-
bisimulation.

Returning to our lemma, suppose that P and @ are two processes with non-
trivial forms such that P ~ @Q. Then, there exists n € N such that P ~" Q.
Suppose that R € P™ for some m € N. Then P ~™*"~1 @ and R ~™t"~1 R
implying P|R ~™*" Q|R. Because ~™*™ is a rate-bisimulation, we obtain that
P|R ~ Q|R.

If P, Q or R (or some of them) have “trivial forms”, then there exist P’ = P,
Q' = Q and R’ = R with non-trivial forms. And because the bisimulation is an



equivalence that extends the structural congruence, we obtain the desired result
also for the general case.

5. Replication: We use the same proof strategy as for the parallel com-
position. We say that a process is in canonic form if it contains no parallel
composition of replicated subprocesses and no replicated process from the class
0=. In other words, !(P|Q) is in canonic form while !P|!Q and !(P|Q)|!!0 are
not; using the structural congruence rules, we can associate to each process P a
structural congruent process with a canonic form called a canonic representative
for P. Notice also that all the canonic representatives of a given process have
the same number of occurrences of the operator “!”. Let P, be the set of process
terms with canonic form. Observe that because structural congruence is a subset
of bisimulation, it is sufficient to prove our lemma only for processes in P,.

As before, let P be the set of processes (in canonic form) with no more than
n occurrences of the operator “I”. Let ~™ be the stochastic bisimulation on P?
and ="C P} x P} defined by

M= ULIPIQ) | P~ Q).

We firstly show, inductively on n, that =™ is a rate-bisimulation. Consider
two arbitrary processes P and @ such that P =™ (). We prove thatif E- P — p
and E F Q — n, then for arbitrary o € AT and C € II(="), u(a)(C) = n(a)(C).

Observe that if P ~" @Q, then either P ~"~1 Q, or P =!R and Q =!S with
R ~" 1 S. In the first case the equality is trivially true. In the other case,
suppose that £+ R — p/ and E+ .S — /. Then, p = pjp and = n/g. We have

p(@)(C) = /(@) (Cir),  n(a)(C) =n'(a)(Cls).

We prove that Cig = Cis. Let U € Cig. Then, U|!R € C and from the
construction of C' € II(~"), we obtain that there exists T € P?~! such that
U =!T. Because !R|!T € C, !(R|T) € C. Now, from R ~"1 S we obtain
R ~ S and because T' ~ T, the case of parallel operator that we have proved
guarantees that R|T ~ S|T. But the canonic representatives V, W of R|T and
S|T respectively are in PP~ meaning that V ~"~! W. The construction of ~"
guarantees further that !V ~™W and because W = S|T" we obtain !(S|T) € C
and U =!T € Cig.

Because Cig = Cis and p/(a)(Cig) = n'(a)(Cis) (this is implied by R ~"~1
S), then u(a)(C) = n(a)(C).



